Performance Improvement Quarterly, 8(2) pp 95 113

Promoting HPT Innovation: A Return to Our Natural Science Roots

Carl Binder

Precision Teaching and Management Systems, Inc

ABSTRACT

by the field of Human Performance Technology (HPT) trace their origins, by way of Programmed Instruction, to the field of Behavior Analysis, a natural science methodology for the study of behavior developed by BF Skinner This methodology, like all experimental natural science, rests on a founda-

tion of functional analysis and standard units of measurement

tional analysis is basic experimental

method, whereby the investigator or

practitioner keeps all but one variable

constant, changes the variable in ques-

tion (an "intervention"), and measures

the effect on other variables Behavior

The core innovations represented

Introduction Human Performance Technology

(HPT) theorists and practitioners

claim their work is research-based.

grounded in empirical science, and

focused on results Yet a review of

NSPI publications over the last few years reveals that fewer than 5% of the tables or displays in articles or chapters contain measures of performance, comparisons of measured results, or measures of change in beoraccomplishments

(Lindsley, 1994) And only 4 out of 60 contributors to the Handbook of Per formance Technology (Stolovitch & Keeps, 1992) shared samples of per-

What should we

Volume 8, Number 2/1995

formance data

Analysis, like HPT, emphasizes prediction and control of individual behavior rather than determination of average effects across groups of individuals In order for HPT to support and encourage

greater and more effective innovation. it must re-emphasize reliance on standard units of measurement and functional analysis and promote policies and procedures that increase variation

of interventions The combination of

encouraging variation and selecting in-

terventions by means of functional

analysis and objective measurement

will ensure steady, reliable progress in

Human Performance Technology

make of this embarrassing fact? Can

we say for sure that we're consis-

tently discovering and implementing performance interventions that produce measured results in the performance of individuals and organizations they serve? How can we tell what works and what doesn't? How

can we select from the cafeteria of

options, approaches, and alleged in-

novations that seem to roll by like waves? As a field, how far have we gotten beyond so-called "level-one evalua-

tion" (Kirkpatrick, 1976)—assessment of whether or not people like what we're doing? How can we be sure that the field as a whole is ad-

truly represent innovation in measurably effective instruction and management technology? This paper reviews the natural science origins of Human Performance Technology, describes how the experimental methodology of Behavior Analysis that gave rise to HPT can continue to ensure innovation and progress based on measured results, and offers some suggestions for promoting innovation in the field

vancing toward ever-more effective performance solutions? Are the

many approaches and interventions

that our publications describe merely

passing fads, trends in thinking and

practice that arise, peak, and are re-

placed by others, without regard to

measured effectiveness? Or do they

Hutchison (1992) reviewed the evolution of Human Performance Technology, emphasizing its foundation in Instructional Systems Design (ISD)

HPT Roots in Behavior

Analysis

Rosenberg, Coscarelli,

and, even more fundamentally, in behavioral psychology Technically, behavioral psychology is a popular derivative of Behavior Analysis, a natural science approach to the study of behavior invented by B F Skinner (Bjork, 1993) that gave rise to Programmed Instruction and Instruc-

tional Systems Design (ISD), and

which, in turn, led to Human Perfor-

mance Technology Despite this history, some current writers in the field refer to behavioral psychology or "behaviorism" as though it were an ancient mythology, an anachronism, a limited view of the universe with naive assumptions and primitive methodologies They contrast the behavioristic foundation of

ioned "behaviorism," because they are better able to deal with complex-Much of the apparent rejection of "behaviorism" by current-day HPT professionals is based on a fundamental misunderstanding of its origins, principles, and methodologies In order to explain how the natural

science approach represented by Be-

havior Analysis can continue to sup-

port solid innovation in HPT, it will

be necessary to clarify this misunder-

ıty

standing

our field with current-day cognitive

science, and more recently, with con-

structivism (Ertmer and Newby,

1993) These more recent disciplines,

they argue, are more sophisticated,

relevant, and effective than old-fash-

Widespread Misunderstanding of Behavior Analysis What, we might ask, is the "behaviorism" to which current-day critics refer? Is it the simplistic and mechanistic stimulus-response theory ad-

vocated by philosophers and experimental psychologists such as John B Watson and Ivan Pavlov during the early part of this century? Or is it the natural science of behavior, based on BF Skinner's single-subject research paradigms—a scientific methodology that led to unprecedented discoveries of order and regularity in the relationships between behavior and the variables of which it is a

function (Bjork, 1993, Johnston and Pennypacker, 1980, Sidman, 1960, Skinner, 1938)? Unfortunately, it is a simplistic stimulus-response account of behav-10r, which many undergraduate textbooks and popular articles inaccurately equate with Skinner's work,

that colors the understanding of cur-

rent-day critics Prompted most dra-

matically by an inaccurate and mis-

leading representation of Behavior

Analysis by Noam Chomksy in his

infamous (and some might say aca-

demically irresponsible) review of

Skinner's book Verbal Behavior

(Chomksy, 1967, MacCorquodale,

1970), a mechanistic rendition of the

science spread across academe and

into the general literate public,

largely with-

ence to pri-

a

sources

This misrep-

resentation

of the sci-

ence contin-

ued to multi-

ply through

refer-

r y

out

several generations of graduate students and professors, whose misrep-

resentations of Skinner's work suggest that they either did not read or did not comprehend scholarly articles or books by Skinner himself or by any of those who followed him in the field of Behavior Analysis It is this "behaviorism" to which most critics refer today, often unwittingly accepting rendition after simplistic rendition, rather than referring to the primary texts or to any of the numerous contemporary research journals in Behavior Analysis (e.g., Journal of Experimental Analysis of Behavior, Journal of Verbal Behavior, Journal of Applied Behavior Analysis, Jour nal of Organizational Behavior Man agement, The Behavior Analyst) As a result, little of the rich methodologi-

This development may also Is it coincidental that the volume of data-based research in HPT has waned along with the influence of Behavior Analysis?

lications

ısts

HPT's Natural Science

Foundation in Measurement If asked to identify B F Skinner's

ciated with his study of reinforce-

ment schedules (Skinner, 1938,

Ferster and Skinner, 1957), stimulus

discrimination (Skinner, 1933), or

perhaps programmed instruction

(Skinner, 1968) However, in

Skinner's own view, his most impor-

tant contributions were use of re-

sponse rate as the basic measure of

1968, Skinner, 1938) In other words,

it was his measurement technology

performance measures in NSPI pub-

munity of practicing behavioral re-

searchers and application special-

had a profound effect on current-day

understanding and application of

core HPT principles The underlying

analysis and evaluation methodology

of HPT has drifted away from its

data-based, scientifically secure ori-

have had a

decelerating

effect on the

pace of em-

pirically

validated in-

novation in

our field, re-

flected by

the lack of

objective

This historical turn of events has

most important contributions, the majority of professionals would likely cite one or more of the findings asso-

behavior strength, and invention of the cumulative response recorder which monitors moment-to-moment changes in response rate (Evans,

cal and conceptual contribution of

this science has spread beyond a com-

natural science of behavior unlike any that preceded or followed it (Bjork, 1993, p. 93) Beyond the measurement tools themselves, it was the analytical methodology for the evaluation of variables, known as func tional behavior analysis, that was Skinner's greatest legacy (Sidman,

that Skinner considered most impor-

tant, and upon which he founded a

1960, Johnston and Pennypacker, 1980) **Ingredients of Functional Behavior Analysis**

For the uninitiated, it will be worthwhile to review the essentials of functional behavior analysis in order to understand its fundamental

contribution to our field. Whether we choose to design performance interventions based on behavioristic, cognitive, or constructivist assumptions, the method of functional behavior analysis remains an essential foundation for HPT in natural science In its simplest terms, we might say that functional analysis is based

on three methodological premises First premise The goal of any science or technology of behavior is the prediction and control of behav-10r

of this statement got Skinner into lots of trouble (e.g., with publication of Beyond Freedom and Dignity, 1971), one might ask what other purpose we could possibly pursue Either we seek methods to improve education and

While the unvarnished directness

training, therapy, management, and

other activities intended to influence

the way people behave, or not If we

are concerned about changing or im-

proving how people behave, then let

ing the effects of variables on behavior, it is best to observe and analyze the behavior of individuals rather than basing conclusions on average results across groups

the effects of interventions

us be blunt we seek to discover and

apply laws of nature that govern be-

havior, to determine which specific

interventions are most likely to affect

behavior, and to assess their relative

impact This is, in essence, prediction

and control (The politically correct

term might be influence) Such an

orientation contrasts with an ap-

proach that selects programs or theo-

ries based on personal preference,

consensus opinion, or other decision criteria not grounded in measured

In passing, it might be worthwhile

constructivists may be unable to ac-

cept this first premise, to the extent

that they adhere to radical subjectiv-

ism and therefore deny the very pos-

sibility of scientific laws regarding

seems to question the very essence of

HPT, which is ostensibly aimed at

developing reliable, cost-effective

methods for producing or enhancing

desired learning and performance

outcomes, and which therefore must rest on the possibility of predicting

Second premise When assess-

that current-day

The constructivist view

results

mention

Skinner's cumulative response recorder, still a standard tool in many basic research laboratories, monitors and produces graphic records of moment-to-moment patterns in indi

vidual response rates of target beaccomplishments haviors or

Skinner's overall approach was to un-98

individuals rather than average effec tiveness for a group Focus on There is, by definition, no the ındıset of observations or vidual was

1mpor-

tant charac-

systematic

ınstruc-

tional tech-

nology from

the begin-

ning (eg,

Markle,

1964) Averaged group

response

measures

may

mask

teristic

derstand, replicate, and refine inter-

ventions capable of reliably changing

or maintaining patterns of indi

vidual behavior in order to discover

general laws or rules that hold for most, if not all, individual organisms under specified conditions (Johnston and Pennypacker, 1980, pp 255 ff) The method of functional behavior analysis is based on repeated demon strations of effectiveness across many

> described using the basic temporal sequence of functional analysis: what comes before the behavior in question, the behavior itself (whether covert or overt), and what comes after the behavior. their own pace

> procedures that cannot be

individual differences A particular curriculum or management intervention may produce an average increase in performance across a large group, but we cannot predict on the basis of such data that it will be effective in every individual case On the other hand, if we can identify variables

measurable objectives, by sometimes divergent paths, at Third premise The domain of

puter interface is a general perfor-

mance intervention designed on the

basis of many individual observations and tests Such an individual

orientation is part of the legacy given

established an important precedent for Gilbert's (1978) emphasis on ob-

serving and replicating the conditions that support the exemplary ac-

complishments of individual per-

formers Fo-

cus on indi-

vıdual

learnıng

and perfor-

mance was

also a key

assumption

ın Mager's

(1988) for-

mulation of

Criterion-Referenced

Instruction,

ables indi-

viduals to

achieve

which

Skinner's focus on the individual

by Behavior Analysis to HPT

behavior and the variables that might affect it can be divided into three parts, based on temporal sequence • Behaviors The overt actions or

- Antecedent events The events and conditions that precede behavior
- covert thoughts and feelings we seek
- to analyze, predict or control, and • Subsequent events The events or conditions that follow target behaviors

Volume 8, Number 2/1995

powerful enough to affect the behav-

10r of many or most individuals, and

if we can repeatedly demonstrate

such results, then we will have devel-

oped a basis for implementing robust,

generally effective interventions As a

practical example, a user-tested com-

and generally applicable approach independent of one's theoretical framework, whether the behaviors or their environments are simple or complex, whether the behaviors in question are overt or covert, or

This categorization of behavioral

and environmental events, based on

temporal sequence, is a very basic

whether the situation we are analyzing or managing is isolated in the laboratory or part of a highly complex world There is nothing theoretical or

biased about this observational and analytic "chunking" strategy, since behavior and performance do, in fact, occur in temporal relationship with the environment Once having specified events and behaviors in time, functional behavior analysis seeks to identify those antecedents and/or subsequent events that have reliable effects on the form or frequencies of behav-

iors-and which can therefore be described as functionally related to the desired behavior change, with precisely the classical scientific or mathematical meaning of functional rela tionship (e.g., Y as a function of X on

Opera-As a requirement for performing functional analysis, Behavior Analysis draws an important distinction between operational description and

functional description of behaviors and environmental events as they

An operational description specifies the events or conditions one is

a graph) **Objective Descriptions** tional and Functional

tinction between operational and functional description by using what he called IS (operational) and the DOES (functional) terminology for expressing relationships among behavioral and environmental variables

ferring to the written or verbal de-

includes the "operations" performed

in order to affect behavior change,

and also descriptions of target behav-

requirement for any science or tech-

nology, a key differentiator from art

or craft Art or craft can survive in the

form of peculiar or unique instances

of creativity and innovation, which

may or may not be replicable by oth-

aım for general solutions or laws, can-

not survive unless they use descrip-

tions of events, conditions, and proce-

dures able to be repeated and verified

in the future and by others Empiri-

cal validation and effective communi-

cation of the effects of innovative pro-

cedures cannot occur without a solid

foundation in operational descrip-

ing the effects of interventions, Be-

havior Analysis moves from opera-

tional to functional description—

specification of behaviors and events

with reference to what they do to one

Lindsley (1964) clarified the dis-

By arranging events and measur-

Science and technology, which

Operational description is a basic

iors

tion

another

Operational description

IS (operational terms) Antecedent Event

observing or evaluating, clearly and completely enough so that other sci-Behaviorentists or practitioners can recognize and/or replicate the situation by re-Subsequent Event

occur in time

whether there are any functional relationships among these eventswhether thev have any reliable effects on one another Such mea-

Operationally speaking, the only

some events or

certain relationship among the

conditions occur before behaviors,

while other events or changes in conditions occur after behaviors (Those

interested in "cognitive processes"

should keep in mind that behaviors

can include covert thoughts or feel-

cedents for other behaviors)

events is temporal

sımulta-

neously measuring

for effects on

the others it

is possible to

determine

surement

and evaluation of effect

minology

ings, and that behaviors can be antedescribe the antecedent event as a discriminative stimulus and the bechanging one of the variables and havior as a response This term indi-What separates the determining that the probability of

The functional (DOES) terminology specifies what the events do, or

how they function, with respect to one

another If, for example, we change or

introduce an antecedent event (e.g.,

by providing an instruction to perform a task in a different way, or

supplying a job aid) and a different

behavior occurs reliably, then we can

cates cause-and-

effect (func-

tional) rela-

tionship be-

tween the antecedent

and the be-

havior

Stimulus 18

thus a func-

tional term,

and can only

be used if we

have deter-

mined that

the event or

condition to

which it re-

fers has an

effect on (or function

with respect

"performance-based" orientation of HPT from other approaches to performance improvement is the assumption that it is possible to discover regularity in the relationships between behavior and the factors that influence it, and to use that regularity to help produce desired performance outcomes. to) the behavior Response is also a leads to functional description, expressed by Lindsley in the DOES terfunctional term that we use only after

behavior changes in relation to previ-**DOES** (functional terms) ously verified stimuli or consequences (Using this technical termi-Discriminative Stimulus nology, we might say "That instruction just isn't a stimulus for Bob," in Response the event we cannot yet demonstrate a functional relationship) Similarly, Consequence

event is actually a functional consequence (or reinforcer) insofar as it increases the strength of behavior it (Again, not all subsequent

if we change what happens after a

behavior, and the rate of behavior

increases, then we can say that the

events function as reinforcers there are individual differences - "different strokes for different folks")

For example, compensation or incentive programs may or may not function as reinforcers with respect to the job behaviors they are intended to increase Whether or not they do is an empirical question, and can only be answered by "running the experiment" - varying incentive arrangements and measuring their effects on

behavior In order to apply functional description, one must use objective, standard measurement procedures and instruments to monitor what happens This might be as simple as counting standard units of behavior or accomplishment without instrumentation (e g, from accounting records, self-tallying, or test scores), or as complex as using an automated

monitoring and recording environment (eg, built into computerized workflow automation software or a laboratory apparatus) But in each case, we change conditions and objectively measure the effects to determine the functions of behaviors and environmental events Strictly speaking, it is also necessary to repeat the "experiment" more than once, measure the effects, and determine that there is a reliable relationship that we can predict and use to influence or control what happens The principle of replication in

behavior analysis replaces the prin-

evaluation designs to identify what procedures have desirable, reliable effects on behavior, and thereby on production of target accomplishments (Gilbert, 1978) While this methodology is fundamental, and implicit in our claims for empirically validated methods, the fact that our

publications generally lack reports of

performance outcomes suggests that

it is not widely practiced by those

demonstrating generality in more

statistically oriented social science

methodologies (Sidman, 1960) (This

principle foreshadowed the evalua-

tion-revision cycle of Instructional

Systems Development, whereby one

"replicates" a particular intervention

and refines or modifies it until it pro-

duces the desired results with most or

of what we claim to do in HPT to

ensure that our interventions are ef-

ment coupled with experimental or

Functional analysis is the essence

We use objective measure-

all individuals)

Why HPT Has Abandoned Skinner's Legacy Simplistic renditions of the "three-

espousing HPT

term contingency" (Skinner, 1953) or functional relationships among discriminative stimuli, responses, and consequences have contributed to misunderstandings about "behavior-1sm "In fact, functional analysis does not suppose behavior to be a collec-

tion of simple, mechanistic stimulusresponse linkages Rather, it reveals a dynamic field of changing probabilities in which different elements shift

in their relative prominence and frequency to form a continuous fabric or stream of interaction between indi viduals and environments (In fact,

ciple of "average effect" as a means of Behavior Analysts' study of complex PERFORMANCE IMPROVEMENT QUARTERLY

teractions are not mechanical or binary They are not like the on/off switching of digital com-

puters

Rather, they

are probabi-

listic, more

appropri-

ately mod-

eled in the

field of artifi-

cial intelli-

neural net-

works than

by sets of de-

cision rules

engine"

I believe

the

gence

ronment ecosystems)

behavior-environment interactions

closely resembles Ecologists' study of multi-dimensional, organism-envi-

terms of Skinner's model support an analytical methodology that enables

scientists or technologists to identify

the effects of various elements in the

stream Even in simple laboratory situations, behavior-environment in-

over-simplification of Skinner's three-term contingency has resulted in a general ignorance about the

The most fundamental purpose for measurement

The three

is to decide whether and how much a given intervention affects the performance of a given individual. The selfcorrecting character of HPT depends on measurement in this form.

order to isolate measure the effects specific variables havior Analysis is no less complex in its implications than experimental physics, biology, or chemistry Surely we would not accuse modern-day formulations of chemistry or physics of

being "too simplistic" merely because

experimental scientists in those

fields work with relatively simplified

conditions prior to extrapolating to more complex situations In fact, just

as mechanical or electrical engineers

be misconstrued to allow only sim-

stimulus dimensions in order to iso-

late, manipulate and thereby mea-

sure the effects of specific variables

In using such simple conditions for

basic research, they have applied the

same rationale as when physicists manipulate sub-atomic particles in

accelerators or cyclotrons to under-

stand, predict, and sometimes control

events occurring in the complex uni-

types studies simple situations as el-

Experimental science of all

ements

more com-

plex "real-

world" con-

ditions, in

and

Be-

apply simple principles of physics with incredible complexity, so performance engineers attempt to apply laws of behavior in complex situations The simplicity of basic laboratory research conditions should not

103

to-repeat responses, and simple

power and generality of functional behavior analysis This has led to a

gradual degradation in the extent to

which HPT has relied on data-based

functional behavior analysis as a sci-

entific methodology, or "innovation

tion has been the experimental conditions under which some basic re-

search scientists analyze behavior

Often, laboratory behavior analysts

have chosen lower organisms, easy-

One source of this over-simplifica-

plistic applications in the real world

the Three-Term Contingency Human Performance Technology, as formulated by Gilbert (1978) and others who came from the tradition of

Gilbert's Extrapolation From

Behavior Analysis, represents a very successful extrapolation from basic science to the complexities of everyday life, just as the design of airplanes combines application of many

relatively simple principles of physics Gilbert's (1978, p 85) Behavior Engineering Model, which divided possible behavior influences into six categories, mirrored Skinner's threeterm contingency

Information (corresponding to discriminative stimuli) divided into data in the environment and knowledge in the individual. Instrumentation (corresponding to responses) divided into instru ments in the environment and re sponse capacity in the individual, and Motivation (corresponding to consequences) divided into incentives in the environment and subjective

preferences or motives in the individual Gilbert created a matrix with Skinner's three-term temporal sequence on one dimension and the environment/individual distinction on the other Whether or not one adopts this particular categorization of the variables affecting performance, the underlying scientific methodology of identifying variables and measuring for possible effects of changes in those variables provides a foundation for systematic, data-based decisionmaking about what is needed and what "works" to improve perfor-

mance When HPT practitioners con-

digression into the methodology of behavior science? Simply stated, the science underlying the origins of HPT has gotten a bad rap Misrepresented by simplistic renditions, it has appeared to the larger community of professionals and the literate public as a crude and simple-minded approach that attempts to describe the behavior of people as though they were rats or pigeons responding un-

der the influence of colored lights and

misunderstanding of the science

thoroughly ignores the enormous

food pellets, caged in boxes!

duct front-end analyses, use try-outs

and pilot tests, or continuously im-

prove their interventions based on

measured results, they follow basic

principles derived from functional

also provides a strong foundation for

Functional Analysis Still Works!

Why have we taken this apparent

This approach

behavior analysis

continued innovation

range of human behavior analysis research and application, the increasing sophistication of quantitative behavior analysis and behavioral economics, and the growing links of functional behavior analysis to behavioral biology (Malott, Whaley & Malott, 1993) In the wake of this misunderstanding, philosophical approaches

represented by cognitive science and now constructivism have come to fill the perceived gap in a "behavioral" account supposedly created by the complexity of human cognitive behavior and the "real world" environment Is it coincidental that the volume of data-based research in HPT has waned along with the influence of

Behavior Analysis? Whether or not

there is a relationship, it is important

occurs in a stream of environmental events and ındıvıdual responses, overt or covert Anv

approach

that claims

scientific va-

lidity will

need to take temporal se-

quence, and

that HPT not abandon the powerful

tion, no set of observations or proce-

dures that cannot be described using

the basic temporal sequence of functional analysis what comes before

the behavior in question, the behav-10r 1tself (whether covert or overt).

and what comes after the behavior

Whether simple or complex, behavior

functional relationships, into account To the extent that any analy-

methodology from which it arose Consider that there is, by defini-

rect measurement of results, and functional analysis

sis of performance seeks to identify the effects of one variable upon others, it will be functional analysis like experimental science in physics,

chemistry, or biology Human Performance Technology, if it seeks to understand and optimally arrange the factors that influence behavior in the workplace or elsewhere, needs to remain firmly rooted in operational description, di-

ally taken Behavior Analysis to task

it offers the benefits of self-

correction and continuous improve-

Cognitive science has tradition-

called "Behavior Analysis" or not, this natural science foundation is what makes HPT potentially so pow-

Whether it be

Without absolute,

standard units of

ent or other either complex visual or auditory inputs, complex real world situations, or internal self-cueing and other forms of covert behavior

cal constructs But even when HPT seeks to apply cognitive constructs, it still must focus on and measure the

solid innovation.

measurement, the field of HPT is unlikely to produce reliable, scientifically

by claiming that "simple stimulus-

response" cannot account for the com-

plexities of human problem-solving, conceptualization, and other ad-

vanced behavior (Ertmer and Newby,

1993) As a field, it claims to solve

this problem by advancing models of mental processes and other hypo-

thetical constructs supposed to exist in the mind or in the brain of the

performer Its research methodology

is based on hypothesis testing Re-

designs The research is intended to

confirm or invalidate the hypotheti-

ing mental models other hypothetical constructs, and

those

potheses in statistical

test then

hy-

searchers

make pre-

dictions us-

behaviors and accomplishments it aims to influence In cognitive science, the variables being manipulated tend to be one form of anteced-

our attention on more complex stimu-

lus configurations and more complex, and often covert, behaviors Method-

contribution of cognitive science to HPT, then, may be that it has focused

None of these behavioral or environmental elements fall outside the scope of the three-term contingency or functional analysis The primary

that prompt additional behavior

ment based on data

that each individual "constructs" his or her own reality, and that any attempt to objectively specify either desired learning outcomes or the elements of a complex environment is, by definition, impossible, since everyone's reality is different some point this position rejects the possibility of applying scientific method to human affairs But in its

ologically, HPT still demands func-

tional analysis, and probably can't

afford to rely on hypothesis testing in

version a form of radical philosophi-

cal subjectivity—is based on the view

Constructivism—in its extreme

applied settings

less extreme form, this view merely claims that people learn best in complex, real-world environments, and that they learn in highly individualized and unpredictable ways and with highly individualized outcomes (Ertmer and Newby, 1993) Again, nothing about the environment, subjective experience, or overt behavior of persons is beyond the scope of the three-term contingency as a descriptive framework, unless one takes the extreme constructivist position—in which case, there is no basis for any form of technology that reliably defines or produces outcomes, let alone a science The primary contribution of constructivism to our field, then, may be that it has led us to prepare

people for more complex environments by shifting attention to prob-

lem solving and other adaptive reper-

toires, and it has reminded us of a

broader set of individual differences

of HPT from other approaches to per-

formance improvement is the as-

The point is that what separates the "performance based" orientation

Measurement and **Innovation** Without direct, standard measurement of outcomes, it is not possible to objectively evaluate or compare interventions In other words, the most fundamental purpose of measurement in HPT is to determine the "functions" of various interventions intended to affect human per-In fact, the progress of formance natural science over the centuries has occurred largely because of progress in measurement technology (Johnston and Pennypacker, 1980) Without objective evaluations and comparisons of effects, HPT as a field cannot support its claims to be based on scientific research methods or to produce measurably superior results

between behavior and the factors

that influence it, and to use that regu-

larity to help produce desired performance outcomes In that context, the

principles of functional behavior

analysis represent an underlying dis-

covery method, implicit in the ISD

model, which recommends refining

interventions through repeated loops of Analysis-Design-Development-

Implementation-Evaluation-Revi-

sion, until they produce optimal re-

sults (Rosenberg, Coscarelli, and

Hutchison, 1992)

Reasons People Measure In the practice of HPT, there are three possible reasons for measuring the effects of what we do

• Validation to prove that some general method or program "works" (often associated with publications or academic theory-

sumption that it is possible to discover regularity in the relationships

testing).

ners and managers accountable for the results of their interventions, and • Decision-making to support individualized or group decisions about what's working and what to try next

Τf

well

enough indi-

viduals re-

spond posi-

tively to a given inter-

vention, that

intervention

"publish-

considered

and

might

able"

Any good system for making individualized decisions about effectivesupness the ports other two purposes, as

Accountability to meet adminis-

trative criteria that hold practitio-

If our field were to move more aggressively toward standard units of measurement, then it would strengthen the

rion performance), those data also support organizational accountability But ultimately, the most fundamental purpose for measurement is to decide whether and how much a given intervention affects the performance of a given individual The selfcorrecting character of HPT depends

measurement systems designed to serve this purpose The Importance of Standard,

Objective Units of Measurement

dard units of measurement (meters,

innovation will be best served by

on measurement in this form

collect individualized decision-making data (e.g., progress toward crite-

Volume 8, Number 2/1995

Natural science deals with stan-

foundation for innovation, continuous progress, and improved efficacy. centage correct calculations (which validated If we take the trouble to "cancel out" the absolute counts on

ment Rating scales (which are essentially refined opinion) and per-

grams, minutes, liters, counts of objects, etc), as does business account-

ing Neither accounting nor scientific discovery could proceed very far with

rating scales or percentage correct

measures in the absence of absolute,

HPT has been influenced by both business and the natural science of

behavior, so one might expect practitioners of HPT to use objective mea-

sures for evaluating interventions

Fortunately,

Nonethe-

less, most of

the data we

see in HPT

publications

and presen-

tations lacks

standard

measure-

units

standard measures

to objectively quantify or evaluate the behaviors or accomplishments we claim to produce or improve (Johnston and Pennypacker, 1980)

quirements" (Gilbert, 1978, p 45)

presents a reasonable list of standard

measures for HPT The following list

represents a slight modification of

which they are based) do not allow us

Without absolute, standard units of measurement, the field of HPT is unlikely to produce reliable, scientifically solid innovation Gilbert's table of "performance re-

Gilbert's original, focused on ensuring that each type of measure is something that we can count, and thereby use to assess change over time

 correct vs incorrect answers or acceptable vs unacceptable units • different classes or categories, defined by objective criteria

Quality (counting by type or cat-

egory)

duced)

number

volume

• unique or innovative accomplishments or behaviors, using criteria

• timeliness (counting those completed within a specified time limit)

Quantity (Counting by amount pro-

• market value (in units of currency) Cost (counting by dollars or time spent) • labor • materials and environment management The field of performance manage-

ment, a sub-set of HPT, has been perhaps most aggressive in applying such objective measures in organizations (Daniels, 1989) Journals such as the Journal of Organizational Behavior Management are filled with articles containing such performance measures If HPT publications and practitioners more frequently and consistently reported results using one or more of these standard measures, while also providing clear op-

erational descriptions of interventions, we would be far better able to evaluate and compare the effects of specific interventions We would also be in a much stronger position, as a field, to continuously improve our

(telling us merely what people think or feel works, or what they like or dislike most) On the other hand, if our field were to move more aggressively toward standard units of measurement, then it would strengthen the foundation for innovation, continuous progress, and improved efficacy Binder (1988), Lindsley (1994), Geis and Smith (1992), Smith and

Geis (1992), and others have made specific methodological recommen-

dations for measuring performance,

some of which emphasize objective,

standard units of measurement

ticles containing objective measures

of results If we are research-based.

what is the research? Without perfor-

mance data, effectiveness is a matter

of opinion-even if that opinion is

formalized in a five-point rating scale

Recommendations for Supporting Innovation in **HPT**

The previous sections of this article summarize key elements of the scientific methodology from which

HPT evolved as a research-based approach to improving performance If natural science, with its focus on objective verification, is to continue as a model for HPT, then these core methodological elements must continue to drive innovation in the field

My first recommendation for supporting effective innovation in HPT, then, is that practitioners increase the frequency with which they gather and report results in the form of standard measures of behavior and accomplishment Given the previously cited lack of reported results in HPT publications, I have always wondered whether practitioners were actually

finement of interventions This is why it is disconcerting to see so few NSPI publications or ar-

technology based on progressive re-

108

sharing it for reasons such as client confidentiality While this is a cred-

ible explanation in some cases, it is

and use ob-

jective mea-

sures of per-

formance, or

we need to

develop

standard

methods for

reporting

such infor-

mation

while main-

taining con-

hard to believe that this problem can fully account for the lack of reported data Depending on the source of the problem, we must either do a better job of convincing our clients to collect

evaluation-revision cycles, but running into resistance, then it behooves NSPI and those concerned with increasing the discovery of effective methods, procedures, tools, and programs should make rewards and recognition contingent

fidentiality In either results. we case, need to work harder to "put our money where our mouths are"-to gather and report more objective measures of performance My second recommendation is to

more rigorously apply the scientific methodology of functional analysis (embodied in the evaluation/revision cycle of the ISD model) Adhering to these guidelines would enable the field to rest on a much stronger foundation for comparing the effects of different interventions and identifying the variables that reliably produce performance improvement in individuals and groups Again, there

is a question about how often HPT

practitioners actually pilot test and

evaluate interventions, based on ob-

jective measures (not merely rating scales or other "Level 1" assessments) If we are neither pilot testing

quent and objective evaluation and revision upon demonstration of on the basis replicable, objective of measured results maining recommendations for increasing effective innovation in our field depend on application of several basic principles of behavioral and cultural evolution

interventions and revising them un-

til they are measurably effective, nor gathering and using objective mea-

sures of behavior, then our field is,

frankly, hypocritical If, as a field, we

are attempting to conduct effective

us to focus

our atten-

tion on this

problem and to support a

common ef-

fort toward

The

more

fre-

re-

A Model for Innovation

Variation and Selection Skinner (1986), Johnson and Layng (1992), and others have em-

phasized that the same general principle of "selection by consequences" applies to biological evolution, individual learning, and evolution of cul-The evolutionary dynamic in each domain is the same variation of alternatives and selection by conse-

quences In evolution, the variation is genetic and selection is by "survival of the fittest" For the individual. various biological, physical, cultural and educational factors prompt new

behaviors, and learning occurs when

dard job tasks that require quantitative and reading skills This program has previously been shown to produce criterion performance on standard-

program on the performance of stan-

ized educational tests more than 20 times faster than average public school programs (Johnson and Layng, 1992) Using standard performance criteria and objective measures, it is possible to select those

interventions that produce greatest effects Consistent with the accomplishment-based philosophy of NSPI

and HPT, we should enshrine

replicable, objective results as the highest possible accomplishment This is the bedrock of scientific progress In addition to or instead of its annual awards for outstanding programs, methods, and publications, NSPI - the "home" organization of HPT - might consider awarding prizes and recognition for interven-

producing one or a number of standard, objectively measured perfor-Conclusion There will surely be readers who

tions, articles, or methods that dem-

conclude that this author is merely a "behaviorist" seeking to re-impose a narrow view on an ever-widening field of endeavor Some may criticize my appeal to the principles of Behavior Analysis as anachronistic, in a period when these principles are being "replaced" by a new generation of cognitive and constructivist method-

ology To those readers I ask only

this If you think that objective mea-

surement and functional analysis no

longer serve the purpose for which

they were intended—the identifica-

onstrate the greatest effectiveness in mance outcomes

cantly influencing individual and

group behavior-then what principles should we put in their place? If HPT cannot rely on the basic principles of experimental science, then what is to distinguish it from any other philosophical trend or fad?

How, in short, can we argue that our overall approach is more likely to produce results than any other, if we neglect the principles and methodology of natural science?

tion of variables capable of signifi-

References Allen, F (1994) Unreasonable facsimile

Do we really want computers to be more like us? Atlantic Monthly, August, 20-23 Binder, C (1988) Measuring performance CBT Directions, October (Re-

printed in Data Training, December, 1988) Bjork, D W (1993) BF Skinner Alife New York Basic Books Chomsky, N (1967) A review of B F Skinner's Verbal Behavior

Jacobovitz and MS Miron (Eds), Readings in the psychology of lan guage New York Prentice Hall, 142-171 Daniels, A. C. (1989) Performance Management Improving quality productivity through positive reinforcement Tucker, GA Performance Management Publications Ertmer, PA and Newby, TJ (1993) Be-

haviorism, cognitivism, constructiv-18m Comparing critical features from a design perspective Performance Improvement Quarterly, 6(4), 50-72 Evans, RI (1968) BF Skinner

man and his ideas New York Dutton and Company, Inc Ferster, C and Skinner, BF (1957) Schedules of reinforcement York Appleton-Century-Crofts

Gers, GL, and Smith, ME (1992) The function of evaluation Stolovitch and E J Keeps (Eds), Handbook of Human Performance

112

Bass, 130-150 Technology San Francisco Jossey-Gilbert, T F (1978) Human competence Bass. 14-31 Engineering worthy performance RWD Technologies (1994) Front End New York McGraw-Hill Analysis Performance and training Horn, R E (1985) Results with strucanalysis software (1994) Columbia. tured writing using the Information MD RWD Technologies Mapping® writing service standards Sidman, M (1960) Tactics of scientific In T M Duffy and R Waller (Eds.), research New York Basic Books Designing usable texts Orlando, FL Skinner, BF (1938) The behavior of Academic Press organisms An experimental analysis Horn, R.E. (1992) Developing Proce-New York Appleton-Century-Crofts dures, Policies, and Documentation Skinner, BF (1986) What is wrong with Waltham, MA Information Mapping. daily life in the western world? Ameri Inc can Psychologist, 41(5), 568-574 Johnson, KR and Layng, TVJ (1992) Skinner, BF (1933) The rate of estab-Breaking the structuralist barrier litlishment of a discrimination Journal eracy and numeracy with fluency of General Psychology, 9, 302-50 American Psychologist 47, 1475-Skinner, BF (1953) Science and human behavior New York MacMillan Johnston, J.M. and Pennypacker, H.S. Skinner, BF (1968) The technology of (1980) Strategies and tactics of hu teaching New York Appleton-Cenman behavioral research Hillsdale. tury-Crofts NJ Lawrence Erlbaum Associates Skinner, BF (1971) Beyond freedom Kirkpatrick, D (1976) Technique for and dignity New York evaluating training programs Balti-Knopf, Inc more ASTD Press Smith, ME and Geis, GL (1992) Plan-Lindsley, O R (1964) Direct measurening an evaluation study In H D ment and prosthesis of retarded be Stolovitch and E J Keeps (Eds), havior Journal of Education, 147, 62-Handbook of Human Performance Technology San Francisco Jossey-Lindsley, OR (1994) Performance is Bass, 151-166 easy to monitor and hard to measure Stolovitch, H D, and Keeps, EJ (Eds), In R Kaufman, S Thiagarajan, and P (1992) Handbook of Human Perfor MacGillis (Eds.), Handbook of Human mance Technology San Francisco Performance Systems San Diego Jossev-Bass University Associates MacCorquodale, K (1970)CARL BINDER is President of Pre-Chomsky's review of Skinner's Verbal Behavior Journal of the Experimen cision Teaching and Management tal Analysis of Behavior, 13, 83-99 Systems, Inc., and Chairman of Mager, R F (1988) Making instruction Product Knowledge Systems, Inc work Belmont, CA Lake Areas of special interest include Malott, RW, Whaley, D & Malott, M behavioral fluency and application (1993) Elementary principles of be of knowledge architectures to havior Englewood Cliffs, NJ learning and reference systems Prentice Hall Mailing address PT/MS, Inc., PO Markle, S M (1964) Good frames and bad New York John Wiley and Sons Box 95009, Nonantum, MA 02195 Rosenberg, MJ, Coscarelli, WC, and Email 73240 1134@Compuserve com Hutchison, CS (1992) The origins and evolution of the field In H D Stolovitch and E J Keeps (Eds) 113 Volume 8, Number 2/1995

Handbook of Human Performance

Technology San Francisco